

Identification

U.S. Patent Number

• 5,370,750

	Type Analysis									
Carbon	1.60 %	Manganese	0.50 %							
Silicon	0.40 %	Chromium	16.00 %							
Nickel	0.35 %	Molybdenum	0.80 %							
Vanadium	0.45 %	Iron	79.90 %							

General Information

Description

Carpenter CTS™ XHP alloy is powder metallurgy, air-hardening, high carbon, high chromium, corrosion-resistant alloy. It can be considered either a high hardness 440C stainless steel or a corrosion-resistant D2 tool steel.

CTS XHP alloy possesses corrosion resistance equivalent to 440C stainless steel and can attain a maximum hardness of 64 HRC. In addition, the composition of CTS XHP alloy has been balanced so that it can attain a minimum hardness of 60 HRC when air cooled from hardening temperatures of 1850 to 2000°F (1010°C to 1093°C). CTS XHP alloy is thus more forgiving during heat treatment than similar alloys.

Applications

Carpenter CTS XHP can be used for specialty knives where the alloy's fine carbide distribution can be used to produce a keenly sharp cutting edge. The material can be easily ground to the thin profiles required for cutting tools. CTS XHP knife blades can be finely polished to high luster or produced with a uniform matte finish.

Corrosion Resistance

Carpenter CTS XHP alloy possesses corrosion resistance equivalent to Type 440C stainless. CTS XHP alloy resists corrosion in normal domestic environments and very mild industrial environments, including many petroleum products and organic materials.

For optimum corrosion resistance, surfaces must be free of scale and foreign particles and finished parts should be passivated.

Detailed test data can be furnished upon request.

Important Note: The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

Nitric Acid	Moderate	Sulfuric Acid	Restricted
Phosphoric Acid	Restricted	Acetic Acid	Restricted
Sodium Hydroxide	Moderate	Salt Spray (NaCl)	Restricted
Humidity	Good		

Properties					
Physical Properties					
Specific Gravity	7.62				
Density	0.2750 lb/in³				

Mean CTE	
77 to 212°F	5.65 x 10 ∘ in/in/°F
77 to 392°F	6.02 x 10 ∘ in/in/°F
77 to 572°F	6.24 x 10 ∘ in/in/°F
77 to 752°F	6.40 x 10 ₅ in/in/°F
77 to 932°F	6.53 x 10 ⋅ in/in/°F
77 to 1112°F	6.63 x 10 ∘ in/in/°F
77 to 1292°F	6.71 x 10 ∘ in/in/°F
77 to 1472°F	6.87 x 10 ⋅ in/in/°F


Mean coefficient of thermal expansion— CTS-XHP Alloy

Annealed condition

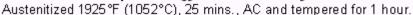
Room Tei	nperature	Average Coefficient 10 ⁻⁶ / °F 10 ⁻⁶ / °C			
77°F to	77°F to 25°C to		10 ⁻⁶ / °C		
212	100	5.65	10.17		
392	200	6.02	10.83		
572	300	6.24	11.23		
752	400	6.40	11.52		
932	500	6.53	11.76		
1112	600	6.63	11.93		
1292	700	6.71	12.13		
1472	800	6.87	12.37		

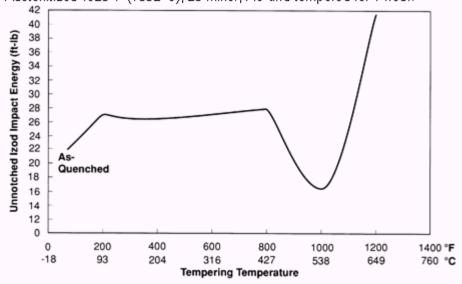
Isothermal transformation (I-T) diagram— CTS-XHP Alloy

Austenitize at 1925°F (1052°C) for 25 mins., quenched to I-T temperature, then brine quenched to room temperature.

Typical Mechanical Properties

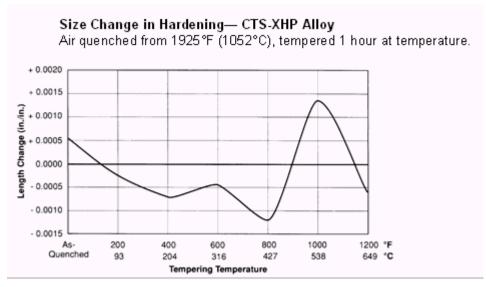
Hardened & Tempered Properties


Compression Test Results— Carpenter CTS XHP Alloy


Compressive yield strength is 347.0 ksi, compressive modulus is 32.6×10^6 psi, heat treat is 1925° F (1052° C) (25 mins.) O.Q. + -100° F (-73° C) (1h) A.W. + 350° F (177° C) (1h) A.C.

Typical Annealed Tensile Properties— CTS-XHP Alloy

Yield Strength		Ultimate Stre		%	% Reduction	Hardness	
ksi	MPa	ksi	MPa	Elongation	In Area	BHN	
68.3	471	125.3	864	10.2	16.0	230/255	


Heat Treatment

Decarburization

Carpenter CTS XHP alloy, like all high carbon tool steels, is subject to decarburization during thermal processing and precautions must be taken to control this condition.

Annealing

Carpenter CTS XHP alloy should be annealed in a neutral atmosphere. Heat uniformly to 1550/1600°F (843/871°C), then cool very slowly in the furnace at a rate of not more than 20°F (11°C) per hour until the furnace is black. The furnace may then be turned off and allowed to cool naturally. Annealed hardness is 230/255 HBN.

Effect of Refrigeration on As-Hardened Condition— CTS-XHP Alloy

Hardness measurements are averages rounded to nearest 0.5 HRC.

Sample size: 1 in. dia. x 0.5 in. thick.

Heat treatment: 25 minutes at hardening temperature, then air cool or oil quench to room temperature. Leave as-hardened, or refrigerate at -100°F (-73°C) for 1 hour.

Air warm to room temperature.

Hardening Temperature		Air Cool	Air Cool +	Oil Quench	Oil Quench +
rempe	rature	only	Refrigeration	Only	Refrigeration
°F °C					
1850	1010	62.0	62.5	62.5	63.5
1900	1038	62.5	63.5	63.0	64.0
1950 1066		62.5	64.0	62.5	64.5
2000	1093	58.5	64.0	57.0	64.0

Effect of Refrigeration on Tempered Hardness— CTS-XHP Alloy

Hardness measurements are averages rounded to nearest 0.5 HRC.

Sample size: 1-in. dia. x 0.5 in. thick.

Heat treatment: 25 minutes at hardening temperature. Air cool or oil quench. Leave as-hardened, or refrigerate at -100°F (-73°C) for 1 hour. Air warm. Temper 1 hour at

temperature. Air cool.

temperature						
Tempe		Air Cool	Air Cool .	Oil Ouspets	Oil Ouenels	
Temperature		Air Cool	Air Cool +	Oil Quench	Oil Quench +	
°F	°C	only	Refrigeration	only	Refrigeration	
		1900°F (103	8°C) Hardening Te	mperature		
As-Hard	lened	62.5	63.5	63.0	64.0	
200	93	63.0	64.0	63.0	64.0	
250	121	63.0	64.0	63.0	64.0	
300	149	62.0	63.0	62.0	63.0	
350	177	61.0	62.0	61.0	62.0	
400	204	60.5	62.0	60.5	61.0	
450	232	60.0	61.0	59.5	60.5	
500	260	59.0	60.5	59.0	60.0	
600	316	58.0			-	
800	427	58.0				
		1950°F (1060	6°C) Hardening Te	mperature		
As-Hard	dened	62.5	64.0	62.5	64.5	
200	93	62.5	65.0	62.5	65.0	
250	121	62.5	65.0	62.0	65.0	
300	149	62.0	64.0	61.5	64.0	
350	177	61.0	63.0	60.5	63.0	
400	204	60.5	62.5	60.0	62.5	
450	232	59.5	61.5	59.0	61.5	
500	260	59.0	61.0	57.5	60.5	
600	316	57.5				
800	427	57.5				

For maximum corrosion resistance, do not temper above 800°F (427°C).

Workability

Forging

Carpenter CTS XHP alloy forges very much like high-speed steels. Preheat to 1400/1500°F (760/816°C), then heat slowly and uniformly to 1900/2100°F (1038/1149°C). Do not forge below 1700°F (927°C), and reheat as often as necessary. Cool in a furnace heated to about 1550°F (843°C), soak uniformly at this temperature, then shut off the heat and cool slowly in the furnace. Anneal after forging. Cool to room temperature before annealing.

Machinability

The following chart contains suggested speeds and feeds for machining Carpenter CTS XHP alloy.

Turning-	-Sinal	e-Point	and	Box	Tools

Depth	l 1	ligh Speed Tool	s	Carbide Tools (Inserts)			
of Cut	Tool			Tool	Speed	(fpm)	Feed
(Inches)	Material	Speed (fpm)	Feed (ipr)	Material	Uncoated	Coated	(ipr)
.150	T15	65	.015	C6	300	350	.015
.025	M42	75	.007	C7	350	450	.007

Turning-Cut-Off and Form Tools

Tool Material			Feed (ipr)						
High	Car-	Speed	Cut-C	off Tool Wid	th (inches)		Form Too	Width (inc	hes)
Speed Tools	bide Tools		1/16	1/8	1/4	1/2	1	1 1/2	2
T15		50	.001	.001	.0015	.001	.001	.001	.0015
	C6	175	.003	.003	.0045	.003	.002	.002	.002

Rough Reaming

nough reaning										
High Speed		Carbid	e Tools		Feed (ip	r) Reamer	Diameter	(inches)		
	Tool Material	Speed (fpm)	Tool Material	Speed (fpm)	1/8	1/4	1/2	1	1 ½	2
	T15	57	C2	75	.003	.006	.010	.015	.018	.021

Drilling

High Speed Tools									
Tool Speed Feed (inches per revolution) Nominal Hole Diameter (inches)									
Material	(fpm)	1/16	1/8	1/4	1/2	3/4	1	1 1/2	2
T15, M42	40-50	.001	.003	.005	.007	.009	.011	.014	.018

Die Threading

FPM for High Speed Tools						
Tool Material	7 or less, tpi	8 to 15, tpi	16 to 24, tpi	25 and up, tpi		
T15, M42	5-12	8-15	10-20	15-25		

Milling, End-Peripheral

Depth		High Speed Tools					Carbide Tools					
of Cut	Tool Speed Feed (ipt) Cutter Diameter (in)				Tool	Speed	Feed (ipt) Cutter Diameter (in)					
(inches)	Material	(fpm)	1/4	1/2	3/4	1-2	Material	(fpm)	1/4	1/2	3/4	1-2
.050	M2, M7	70	.001	.002	.003	.004	C6	235	.001	.002	.004	.006

Tapping

High Speed	Tools
Tool Material	Speed (tpm)
M1, M7, M10 Nitrided	8-18

Broaching

High Speed Tools					
Tool Material	Speed (fpm)	Chip Load (ipt)			
T15, M42	10	.002			

Additional Machinability Notes

When using carbide tools, surface speed feet/minute (SFPM) can be increased between 2 and 3 times over the high-speed suggestions. Feeds can be increased between 50% and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Other Information

Wear Resistance

The wear characteristics in the table below were generated using ASTM G65 Procedure "A", the Standard Practice for conducting Dry Sand/Rubber Wheel Abrasion Tests. The data are presented as volume loss as required by the ASTM Standard. It should be noted therefore that a lower number means better wear resistance.

Heat Treatments:

CTS-XHP Alloy 1925°F (1052°C) (25 mins.) Air Cool/-100°F (-73°C)

(1h) Air Warm/350°F (177°C) (1h) Air Cool

440 C 1900°F (1038°C) (25 mins.) Oil Quench/-100°F (-73°C)

(1h) Air Warm/350°F (177°C) (1h) Air Cool

D2 1850°F (1010°C) (25 mins.) Air Cool-As Hardened

		Average ASTM
Material	Hardness, HRC	Volume Loss (mm³)
CTS-XHP Alloy	62.5	35.1
440C	58.5	66.9
D2	63.5	37.6

Forms Manufactured

• Bar • Billet

• Strip

Technical Articles

• Blade Alloys 101: What You Need to Know About the Alloys Used for Knife Blades

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.